
Simulink® Test™

User’s Guide

R2015a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Test™ User's Guide
© COPYRIGHT 2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

March 2015 Online only New for Version 1.0 (Release 2015a)

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

iii

Contents

Test Strategies
1

Functional Testing in Verification . 1-2

Use Requirements-Based Test Cases . 1-3

Test Harness
2

Test Harness and Model Relationship 2-2
Test Harness Description . 2-2
Harness / Model Relationship for a Model Component 2-3
Harness / Model Relationship for a Top-Level Model 2-4
Resolving Parameters . 2-5

Considerations and Limitations . 2-6
Test Harness . 2-6
Test Sequence Block . 2-6

Select Test Harness Properties for Your Task 2-8
Create a Test Harness . 2-8
Considerations for Selecting Test Harness Properties 2-8
Choosing Sources and Sinks . 2-8
Use Separate Assessment Block . 2-9
Initial Harness Configuration . 2-9
Verification Modes . 2-10
Change Harness Properties . 2-11

Test Harness Parameters and Signals 2-12
Test Harness Generation Without Compilation 2-12
Signal Conversion Subsystem . 2-12

iv Contents

Refine, Test, and Debug a Subsystem 2-14
Model and Requirements . 2-14
Create a Harness for the Controller 2-16
Inspect and Refine the Controller . 2-18
Add a Test Case and Test the Controller 2-19
Debug the Controller . 2-20

Manage Test Harnesses . 2-23
Preview and Open a Test Harness 2-23
Delete Test Harnesses Programmatically 2-24
Convert Test Harnesses Into Separate Models 2-25

Synchronize Changes Between Test Harness and Model . . 2-27
Maintain SIL or PIL Block Fidelity 2-27
Synchronize Changes to the Component Under Test 2-27
Rebuild Test Harness . 2-28
Update Parameters from Test Harness to Model 2-28

Test Sequences and Assessments
3

Test a Model Component Using Signal Functions 3-2
Create a Test Sequence . 3-2
Simulate the Test Harness . 3-4

Test Downshift Points of a Transmission Controller 3-6
Test Objectives and Model . 3-6
The Test Sequence . 3-7
Add Test Assessments for Controller 3-8
Test the Controller . 3-10

Test Harness Software- and Processor-in-the-Loop
4

SIL Verification for a Subsystem . 4-2
Create a SIL Verification Harness for a Controller 4-3
Configure and Simulate a SIL Verification Harness 4-4

v

Compare the SIL Block and Model Controller Outputs 4-4

Simulink Test Manager Introduction
5

Introduction to the Test Manager . 5-2
Test Manager Description . 5-2
Test Creation and Hierarchy . 5-2
Test Results . 5-3
Share Results . 5-3

Test Manager Test Cases
6

Test Model Output Against a Baseline 6-2
Create the Test Case . 6-2
Run the Test Case and View Results 6-3

Test a Simulation for Run-Time Errors 6-6
Configure the Model . 6-6
Create the Test Case . 6-7
Run the Test Case . 6-7
View Test Results . 6-8

Generate Test Cases from Model Components 6-9

Run Test Cases Programmatically . 6-11
List of Functions and Classes . 6-11
Run a Test File and Report Results 6-11

How Tolerances Are Applied to Test Criteria 6-13
Modify Criteria Tolerances . 6-13

Test Manager Limitations . 6-14
Simulation Mode . 6-14
Callback Scripts . 6-14
Simulink Design Verifier Input File 6-14

vi Contents

Protected Models . 6-15

Test Case Sections . 6-16
Description . 6-17
Requirements . 6-17
System Under Test . 6-17
Parameter Overrides . 6-18
Callbacks . 6-19
Inputs . 6-19
Outputs . 6-20
Configuration Settings . 6-20
Simulation 1 and Simulation 2 . 6-20
Equivalence Criteria . 6-21
Baseline Criteria . 6-21

Test Manager Results and Reports
7

View Test Case Results . 7-2
View Results Summary . 7-2
Visualize Test Case Simulation Output and Criteria 7-4

Export Test Results and Generate Reports 7-9
Export Results . 7-9
Create a Test Results Report . 7-10

Results Sections . 7-11
Summary . 7-12
Test Requirement . 7-12
Errors . 7-13
Logs . 7-13
Notes . 7-13
Parameter Overrides . 7-13

1

Test Strategies

• “Functional Testing in Verification” on page 1-2
• “Use Requirements-Based Test Cases” on page 1-3

1 Test Strategies

1-2

Functional Testing in Verification

Model verification seeks to demonstrate that the “design is right,” that is, that the model
meets the design requirements and conforms to standards. Model verification activities
include property proving, model coverage measurement, requirements tracing, and
functional testing.

Functional testing can be used at any stage of model development, at any level of model
hierarchy. An effective approach is to start with lower-level functional units and work
up the model hierarchy to the system level. In functional testing, you simulate the
model with one or more test cases and compare the result to expectations. Each test case
includes inputs to the component under test, expected outputs, and test assessments.
Rigorous functional testing maps each test case to a model requirement. Building up
suites of test cases increases the range of requirements for which the model can be shown
to behave as expected.

Functional testing can be used to:

• Test the model as it is being developed.
• Debug the model after completion.
• Check that the model does not regress.

Common methods of generating test inputs include logging signals from your model,
writing test vectors based on requirements, or generating test cases using Simulink®

Design Verifier™. You can define expected outputs using timeseries data and/or model
assessments such as assertions. The goal is to provide a conclusive pass or fail result for
your test.

 Use Requirements-Based Test Cases

1-3

Use Requirements-Based Test Cases

Begin your model development with high-level requirements describing the system
operation in natural language. To reduce ambiguity and more fully define the system
specification, refine high-level requirements into detailed requirements that define
operation with regards to the system architecture. Refer to these requirements as you
design, refine, and test the system.

Effective functional testing uses test cases that are derived from high-level and detailed
requirements. Test cases include inputs to the component under test (test vectors) and
expected outputs. Based on expected outputs, you define acceptance criteria including
tolerances compared to other data, or assessments on the system behavior. Basing test
cases on requirements helps you link pass or fail results of each test to specific line items
in your requirements document.

You can link test cases to requirements with the Test Manager, and with Simulink
Verification and Validation™ you can link blocks to requirements.

2

Test Harness

• “Test Harness and Model Relationship” on page 2-2
• “Considerations and Limitations” on page 2-6
• “Select Test Harness Properties for Your Task” on page 2-8
• “Test Harness Parameters and Signals” on page 2-12
• “Refine, Test, and Debug a Subsystem” on page 2-14
• “Manage Test Harnesses” on page 2-23
• “Synchronize Changes Between Test Harness and Model” on page 2-27

2 Test Harness

2-2

Test Harness and Model Relationship

In this section...

“Test Harness Description” on page 2-2
“Harness / Model Relationship for a Model Component” on page 2-3
“Harness / Model Relationship for a Top-Level Model” on page 2-4
“Resolving Parameters” on page 2-5

Test Harness Description

A test harness is a model block diagram that you can use to develop, refine, or debug a
Simulink model or component. In the main model, you associate a harness with a model
component or the top-level model. The test harness contains a separate model workspace
and configuration set, yet it persists with the main model and can be accessed via the
model canvas.

You build the test harness model around the component under test, which links the
harness to the main model. If you edit the component under test in the harness, the main
model updates when you close the harness. You can generate a test harness for:

• A model component, such as a subsystem. The test harness isolates the component,
providing a separate simulation environment from the main model.

• A top-level model. The component under test is a Model block referencing the main
model.

 Test Harness and Model Relationship

2-3

Harness / Model Relationship for a Model Component

When you associate a test harness with a model component, the harness model
workspace contains copies of parameters associated with the component.

This example shows a test harness for a component that contains a Gain block. The
harness model workspace contains a copy of the parameter g because g defines a part of
the component.

The parameter h is the gain of a gain block in the harness, outside the component under
test (CUT). h exists only in the harness model workspace.

2 Test Harness

2-4

Harness / Model Relationship for a Top-Level Model

When you associate a harness with the top level of the main model, the harness model
workspace does not contain copies of parameters relevant to the component. The
component under test is a Model block referencing the main model, and parameters
remain in the main model workspace. In this example, the component under test
references the main model, and the variable g exists in the main model workspace. The
variable h is the value of the Gain block in the harness. It exists only in the harness
model workspace.

 Test Harness and Model Relationship

2-5

Resolving Parameters

Simulink resolves parameters in the test harness to the most local workspace.
Parameters resolve to the harness model workspace, then the system model workspace,
then the base MATLAB workspace.

More About
• “Componentization Guidelines”

2 Test Harness

2-6

Considerations and Limitations

In this section...

“Test Harness” on page 2-6
“Test Sequence Block” on page 2-6

Consider these behaviors and limitations when working with a test harness or Test
Sequence block.

Test Harness

• You can open only one test harness at a time per main model.
• Do not comment out the component under test in the test harness. Commenting out

the component under test can cause unexpected behavior.
• Requirements linking is not supported for blocks or other objects in test harness

models. If you have a Simulink Verification and Validation license, you can link
requirements to test cases in the test manager. See “Requirements”.

• If a subsystem has a test harness, you cannot expand the subsystem. Delete all test
harnesses before expanding the subsystem.

• Test harnesses are not supported for blocks underneath a Stateflow® object.
• For a library, a test harness can only be created for an active top-level library link.
• Test harnesses do not support asynchronous sample times.
• Upgrade advisor and XML differencing are not supported for test harness models.
• A test harness with a Signal Builder block source does not support:

• Frame-based signals
• Complex signals
• Variable-dimension signals
• Arrays of buses

• For a test harness with a Test Sequence block source, all inputs to the component
under test must operate with the same sample time.

Test Sequence Block

• HDL code generation is not supported for the Test Sequence block.

 Considerations and Limitations

2-7

• Code generation reports do not display Test Sequence block contents.
• Requirements linking is not supported from the Test Sequence Editor.

2 Test Harness

2-8

Select Test Harness Properties for Your Task

In this section...

“Create a Test Harness” on page 2-8
“Considerations for Selecting Test Harness Properties” on page 2-8
“Choosing Sources and Sinks” on page 2-8
“Use Separate Assessment Block” on page 2-9
“Initial Harness Configuration” on page 2-9
“Verification Modes” on page 2-10
“Change Harness Properties” on page 2-11

Create a Test Harness

Create the test harness and set the harness properties using the Create Test Harness
dialog box. Highlight the subsystem you want to create the harness for, or highlight no
blocks to create a harness for the top-level model. From the menu, select Analysis >
Test Harness > Create Test Harness.

Considerations for Selecting Test Harness Properties

Before selecting test harness properties, consider the following:

• What data source you want to use for your test case input
• How you want to view or store test results
• Whether you want to copy parameters and workspaces from the main model to the

harness
• Whether you plan to edit the component under test
• How you want to synchronize changes between the test harness and model

You can set sources and sinks only during harness creation. You can set the other
properties when you create the harness or change them after you create the harness.

Choosing Sources and Sinks

In the Create Test Harness dialog box, under Sources and Sinks, select the source and
sink from the appropriate menus. Select a Test Sequence block source to use outputs of

 Select Test Harness Properties for Your Task

2-9

the component under test as inputs to the test case. You can build a test harness using
any block from the Simulink Sources or Sinks library. Select Custom source or sink, and
entering the path to the custom block, such as:

simulink/Sources/Sine Wave

simulink/Sinks/Terminator

Custom sources and sinks build the test harness with one block per port.

Use Separate Assessment Block

A standalone Test Assessment block can be useful if you want to reuse the same
assessments in multiple test harnesses. To build your harness with a separate block,
click Use separate assessment block.

You can also write test assessments directly in the Test Sequence block.

Initial Harness Configuration

You can select a preconfigured set of test harness properties for common tasks.

• Prototyping: Choose this configuration if your model is early in development. You
can edit the component under test in the test harness, and control when the harness
is rebuilt from the main model. You can use this configuration if your main model
does not compile.

• Refinement/Debugging: Choose this configuration if you want the test harness to
include the configuration set, conversion subsystems, and model parameters for the
component under test. This configuration can be useful for a nearly complete model,
when you expect limited changes to the design.

• Verification: Choose this configuration if you require high fidelity between the
main model and the test harness, which is commonly needed for model verification.
The test harness prevents you from editing the component under test, and the test
harness rebuilds every time you open it. In addition to a normal subsystem, you can
choose a SIL or PIL block as the component under test (requires Embedded Coder®).
See “Verification Modes”.

You can also select a custom combination of harness properties. When you select Custom,
these options become available:

2 Test Harness

2-10

Property Description Additional Information

Create without
compiling the
model

When you select this property,
the main model does not compile
when generating the test harness.
The test harness does not contain
conversion subsystems, configuration
parameters, or model workspace data
for the component under test.

You might have to take
additional steps for the
test harness to compile,
such as adding signal
conversion blocks.

Rebuild harness on
open

When you select this property, the
test harness rebuilds every time you
open it.

For details on the rebuild
process, see “Synchronize
Changes Between Test
Harness and Model”.

Update
Configuration
Parameters and
Model Workspace
data on rebuild

When you select this property,
configuration parameters and model
workspace data update when you
rebuild the harness.

For details on the rebuild
process, see “Synchronize
Changes Between Test
Harness and Model”.

Enable component
editing in harness
model

When you select this property, you
can edit the component under test in
the test harness.

Verification Modes

The test harness verification mode determines the type of block generated in the test
harness.

• Normal: A Simulink block diagram (model in the loop).
• SIL: The component under test references generated code, operating as software-in-

the-loop. Requires Embedded Coder.
• PIL: The component under test references generated code for a specific processor

instruction set, operating as processor-in-the-loop. Requires Embedded Coder.

Note: Keep the SIL or PIL code in the test harness synchronized with the latest
component design. If you select SIL or PIL verification mode without selecting Rebuild
harness on open, your SIL or PIL block code might not reflect recent updates to the
main model design. Regenerate code for the SIL or PIL block in the test harness by
selecting Analysis > Test Harness > Rebuild Harness from Main Model.

 Select Test Harness Properties for Your Task

2-11

Change Harness Properties

You can change properties of the test harness by clicking the badge in the test
harness block diagram.

See Also
Test Sequence | “Synchronize Changes Between Test Harness and Model”

2 Test Harness

2-12

Test Harness Parameters and Signals

In this section...

“Test Harness Generation Without Compilation” on page 2-12
“Signal Conversion Subsystem” on page 2-12

Test Harness Generation Without Compilation

You can generate a test harness without compiling the main model. For example, this
option can be useful if you are prototyping a design that cannot yet compile. If the main
model is not compiled when generating a test harness:

• Parameters are not copied to the test harness workspace.
• The main model configuration is not copied to the test harness.
• The test harness does not contain conversion subsystems.

To execute these processes, you can rebuild the harness when you are ready to compile
the main model. For more information, see “Synchronize Changes Between Test Harness
and Model” on page 2-27.

Signal Conversion Subsystem

A signal conversion subsystem contains signal specification blocks to check signal
properties to and from the component under test, such as:

 Test Harness Parameters and Signals

2-13

• Data type
• Sample time
• Bus properties
• Dimension
• Complexity

Like any model, a test harness does not compile if the signal types do not match the
signal specification. If you get a compile error related to the signal conversion subsystem,
check the signal properties and modify the test harness design if necessary. For example:

• You can add conversion blocks to your test harness outside the conversion subsystem.
• You can edit the conversion subsystem. The subsystem is locked by default. To

unlock it, right-click the subsystem, select Block Parameters, then set Read/Write
permissions to ReadWrite.

Note: When you rebuild the test harness, the signal conversion subsystems are
rebuilt. Any changes made to the conversion subsystems are lost.

2 Test Harness

2-14

Refine, Test, and Debug a Subsystem

In this section...

“Model and Requirements” on page 2-14
“Create a Harness for the Controller” on page 2-16
“Inspect and Refine the Controller” on page 2-18
“Add a Test Case and Test the Controller” on page 2-19
“Debug the Controller” on page 2-20

Test harnesses provide a development and testing environment that leaves the main
model design intact. You can test a functional unit of your model in isolation without
altering the main model. This example demonstrates refining and testing a controller
subsystem using a test harness. The main model is a controller-plant model of an air
conditioning/heat pump unit. The controller must operate according to several simple
requirements.

Model and Requirements

1 Access the model. At the MATLAB command prompt, enter

cd(fullfile(matlabroot,'help','toolbox','sltest','examples'));

2 Copy this model file and supporting files to a writable location on the MATLAB path:

sltestHeatpumpExample.slx

sltestHeatpumpBusPostLoadFcn.mat

PumpDirection.m

3 Open the model.

open_system('sltestHeatpumpExample')

 Refine, Test, and Debug a Subsystem

2-15

In the example model:

• The controller accepts the room temperature and the set temperature inputs.
• The controller output is a bus with signals controlling the fan, heat pump, and the

direction of the heat pump (heat or cool).
• The plant accepts the control bus. The heat pump and the fan signals are Boolean,

and the heat pump direction is specified by +1 for cooling and -1 for heating.

The test covers four temperature conditions. Each condition corresponds to one operating
state with fan, pump, and pump direction signal outputs.

2 Test Harness

2-16

Temperature condition System state Fan
command

Pump
command

Pump
direction

|Troom - Tset| < DeltaT_fan idle 0 0 0
DeltaT_fan <= |Troom

- Tset| < DeltaT_pump

fan only 1 0 0

|Troom - Tset| <

DeltaT_pump and Tset < Troom

cooling 1 1 -1

|Troom - Tset| <

DeltaT_pump and Tset >Troom

heating 1 1 1

Create a Harness for the Controller

1 Right-click the Controller subsystem and select Test Harness > Create Test
Harness (Controller).

2 Set the harness properties:

• Name: devel_harness_1
• Sources and Sinks: None and Scope
• Initial harness configuration: Refinement/Debugging
• Select Open harness after creation.

 Refine, Test, and Debug a Subsystem

2-17

3 Click OK to create the test harness.

2 Test Harness

2-18

Inspect and Refine the Controller

1 Double-click Controller to open the subsystem.

2 Notice that the state chart is disconnected from its ports. Fix this issue by connecting
the chart as shown.

 Refine, Test, and Debug a Subsystem

2-19

3 In the harness, click the save button in the toolbar to save the harness and model.

Add a Test Case and Test the Controller

1 Navigate to the top level of devel_harness_1.
2 Create a test case for the harness with a constant Tset and a time-varying Troom.

Connect a Constant block to the Tset input and set the value to 75.
3 Add a Sine Wave block to the harness model to simulate a temperature signal.

Connect the Sine Wave block to the conversion subsystem input Troom_in.
4 Double-click the Sine Wave block and set the parameters:

• Amplitude: 15
• Bias: 75
• Frequency: 2*pi/3600
• Phase (rad): 0
• Sample time: 1
• Select Interpret vector parameters as 1–D.

2 Test Harness

2-20

5 In the Configuration Parameters dialog box, in the Data Import/Export pane,
select Input and enter u. u is an existing structure in the MATLAB® base
workspace.

6 In the Solver pane, set Stop time to 3600.
7 Open the three scopes in the harness model.
8 Simulate the harness.

Debug the Controller

1 Observe the controller output. fan_cmd is 1 during the IDLE condition where |
Troom - Tset| < DeltaT_fan.

This is a bug. fan_cmd should equal 0 at IDLE. The fan_cmd control output must be
changed for IDLE.

 Refine, Test, and Debug a Subsystem

2-21

2 In the harness model, open the Controller subsystem.
3 Open controller_chart.
4 In the IDLE state, fan_cmd is set to return 1. Change fan_cmd to return 0. IDLE is

now:

IDLE

entry:

fan_cmd = 0;

 pump_cmd = 0;

 pump_dir = 0;

5 Simulate the harness model again and observe the outputs.

6 fan_cmd now meets the requirement to equal 0 at IDLE.

2 Test Harness

2-22

Related Examples
• “Test a Model Component Using Signal Functions”
• “Test Downshift Points of a Transmission Controller”

 Manage Test Harnesses

2-23

Manage Test Harnesses

In this section...

“Preview and Open a Test Harness” on page 2-23
“Delete Test Harnesses Programmatically” on page 2-24
“Convert Test Harnesses Into Separate Models” on page 2-25

Preview and Open a Test Harness

When a model component has a test harness, a badge appears in the lower right of the
block. Click the badge to preview test harnesses, and click a thumbnail image to open the
harness.

When a model block diagram has a test harness, click the pullout icon in the model
canvas to preview the test harnesses. Click a thumbnail to open the harness

2 Test Harness

2-24

Delete Test Harnesses Programmatically

You can delete a harness using the harness thumbnail. You can also delete harnesses
programmatically, which can reduce effort when your model has harnesses at different
hierarchy levels. This example demonstrates creating four test harnesses for a model and
deleting them.

1 Open the model.

open_system('sf_car');

2 Enter the following at the command line to create two harnesses for the
transmission subsystem and two harnesses for the transmission ratio
subsystem.

Simulink.harness.create('sf_car/transmission');

Simulink.harness.create('sf_car/transmission');

Simulink.harness.create('sf_car/transmission/transmission ratio');

Simulink.harness.create('sf_car/transmission/transmission ratio');

3 Find the harnesses in the sf_car model.

test_harness_list = Simulink.harness.find('sf_car')

test_harness_list =

1x4 struct array with fields:

 model

 name

 description

 type

 ownerHandle

 ownerFullPath

 ownerType

 isActive

 canBeActivated

 lockMode

 verificationMode

 saveIndependently

 rebuildOnOpen

 rebuildModelData

4 Delete the harnesses.

for k = 1:length(test_harness_list)

 Manage Test Harnesses

2-25

 Simulink.harness.delete(test_harness_list(k).ownerFullPath,...

 test_harness_list(k).name)

end

Convert Test Harnesses Into Separate Models

You can convert a test harness block diagram to a separate model, which is useful if
you have completed testing but want to preserve the harness design. Select File >
Export Model to > Independent Model For Test Harness. The harness converts to
a separate model containing the blocks from your test harness. Converting removes the
harness from your model and breaks the link to the main model.

You can also convert harnesses into separate models programmatically. Programmatic
conversion can be useful for handling test harnesses at different hierarchy levels, or for
clearing all harnesses from a model without losing the harness designs. This example
demonstrates creating four test harnesses for a model and exporting them to separate
models.

1 Open the model.

open_system('sf_car');

2 Enter the following at the command line to create two harnesses for the
transmission subsystem and two harnesses for the transmission ratio
subsystem.

Simulink.harness.create('sf_car/transmission');

Simulink.harness.create('sf_car/transmission');

Simulink.harness.create('sf_car/transmission/transmission ratio');

Simulink.harness.create('sf_car/transmission/transmission ratio');

3 Find the harnesses in the sf_car model.

test_harness_list = Simulink.harness.find('sf_car')

test_harness_list =

1x4 struct array with fields:

 model

 name

 description

 type

 ownerHandle

2 Test Harness

2-26

 ownerFullPath

 ownerType

 isActive

 canBeActivated

 lockMode

 verificationMode

 saveIndependently

 rebuildOnOpen

 rebuildModelData

4 Convert the harnesses into new, separate models. The main model must be saved
before each export operation.

save_system('sf_car');

for k = 1:length(test_harness_list)

 Simulink.harness.export(test_harness_list(k).ownerFullPath,...

 test_harness_list(k).name,'Name',['test_harness_',num2str(k)]);

 save_system('sf_car');

end

See Also

Functions
sltest.harness.create | sltest.harness.delete | sltest.harness.export |
sltest.harness.find | sltest.harness.load | sltest.harness.open

 Synchronize Changes Between Test Harness and Model

2-27

Synchronize Changes Between Test Harness and Model

In this section...

“Maintain SIL or PIL Block Fidelity” on page 2-27
“Synchronize Changes to the Component Under Test” on page 2-27
“Rebuild Test Harness” on page 2-28
“Update Parameters from Test Harness to Model” on page 2-28

A test harness lets you synchronize changes between the test harness and the main
model. You can transfer a configuration set and model workspace variables, update the
component design, and rebuild the harness to reflect the latest model design. These
abilities provide an advantage over isolating a model component in a separate Simulink
model.

Maintain SIL or PIL Block Fidelity

If you use a software-in-the-loop (SIL) or processor-in-the-loop (PIL) block in the test
harness, regularly rebuild your test harness so that the generated code referenced by
the SIL/PIL block reflects the current main model. You can set a test harness to rebuild
every time it opens. Open the test harness properties dialog box by clicking the test

harness badge in the harness model and select Rebuild harness on open.

To minimize compilation, you can manually rebuild the test harness if you have a large
or complex main model. You can check the SIL/PIL block equivalence to determine
whether to rebuild the harness. In the harness model, from the menu bar, select
Analysis > Test Harness > Compare Checksums, which compares the checksum
of the component in the model to the checksum archived during the SIL/PIL block
generation. If the result is different, rebuild the harness by clicking Analysis > Test
Harness > Rebuild Harness from Main Model.

For information about running multiple simulations with unchanged generated code, see
“Prevent Code Changes in Multiple SIL and PIL Simulations”.

Synchronize Changes to the Component Under Test

The component in the harness or the main model updates to the latest design when you
open or close a test harness:

2 Test Harness

2-28

• Design changes from model to harness — The component under test updates when
you open the harness.

• Design changes from harness to model — The component in the model updates when
you close the harness.

Note: If you create a test harness in SIL or PIL mode for a Model block, the block mode
in the test harness is changed to SIL or PIL, respectively. This mode is not updated to
the main model when you close the test harness.

Rebuild Test Harness

You can rebuild a test harness to reflect the latest state of the main model. In the test
harness, select Analysis > Test Harness > Rebuild Harness from Main Model. This
operation rebuilds conversion subsystems in the test harness. If the test harness does not
have conversion subsystems, this process adds them.

Depending on your test harness settings, harness rebuild can also copy parameters and
the active model configuration set. For example, suppose that you update the component
design to use a new parameter. When you rebuild the harness, the harness model
workspace receives a copy of the parameter.

To copy parameters and the model configuration set, when you create or modify the
properties of a test harness, select Update Configuration Parameters and Model
Workspace data on rebuild.

Rebuilding can disconnect signal lines. For example, if signal names changed in the main
model, signal lines in the test harness can be disconnected. If necessary, reconnect signal
lines to the component under test or conversion subsystems.

Also see “Select Test Harness Properties for Your Task” and
sltest.harness.rebuild.

Update Parameters from Test Harness to Model

When working in the test harness, you can add a workspace item to the harness model
workspace or change the test harness configuration set. To update the configuration
set and workspace in the main model, select Analysis > Test Harness > Push
Parameters to Main Model. This operation:

 Synchronize Changes Between Test Harness and Model

2-29

• Copies the active configuration set from the harness model to the main model, and
makes it the active configuration set in the main model.

• Copies workspace contents to the main model, if the contents are relevant to the
component under test.

This example shows how to push a new workspace variable to the main model.

1 Access the model. At the MATLAB command prompt, enter

cd(fullfile(docroot,'toolbox','sltest','examples'))

2 Copy this model file and supporting files to a writable location on the MATLAB path:

sltestHeatpumpExample.slx

sltestHeatpumpBusPostLoadFcn.mat

PumpDirection.m

3 Open the model.

open_system('sltestHeatpumpExample')

4 Right-click the Controller subsystem and select Test Harness > Create Test
Harness.

5 In the Create Test Harness dialog box, click OK to create a test harness with default
properties. The test harness model opens.

6 In the test harness model, select Tools > Model Explorer to open the Model
Explorer. Expand the items under the test harness name and select Model
Workspace.

7 Select Add > MATLAB Variable. Set the variable name to H and the value to 1.
8 In the top level of the test harness, double-click Controller to open the subsystem.

Add a Gain block and set the value to H. Connect it as shown.

2 Test Harness

2-30

9 Select Analysis > Test Harness > Push Parameters to Main Model.
10 In the Model Explorer, expand the main model and select Model Workspace. H

appears as a variable in the workspace.

Related Examples
• “SIL Verification for a Subsystem”

3

Test Sequences and Assessments

• “Test a Model Component Using Signal Functions” on page 3-2
• “Test Downshift Points of a Transmission Controller” on page 3-6

3 Test Sequences and Assessments

3-2

Test a Model Component Using Signal Functions

In this section...

“Create a Test Sequence” on page 3-2
“Simulate the Test Harness” on page 3-4

Using the Test Sequence block, you can you can define a set of input functions to test
your component, and conditionally switch the function based on component signals. See
Test Sequence for more information.

This example demonstrates building and simulating a test sequence using ramp and
square wave signals. The test initializes at constant temperature, ramps down to a limit,
and executes a square-wave temperature cycle.

Create a Test Sequence

1 Access the model. At the MATLAB command line, enter

cd(fullfile(docroot,'toolbox','sltest','examples'))

2 Copy this model file and supporting files to a writable location on the MATLAB path:

sltestSignalFunctionExample.slx

sltestHeatpumpBusPostLoadFcn.mat

PumpDirection.m

3 Open the model, and open the harness.

open_system('sltestSignalFunctionExample');

sltest.harness.open('sltestSignalFunctionExample/Controller','RampSquareHarness')

4 Double-click the Test Sequence block to open the test sequence editor.

 Test a Model Component Using Signal Functions

3-3

5 Rename the first and second steps. Delete the default names and replace them with
const_90 and ramp_down.

6 Add a third step to the table. Right-click the const_90 line, and select Add step
after. Name the third step temp_step.

7 Add output conditions and transition fields to the steps. Copy and paste the listings
from the table.

Step Transition Next step

const_90

Tset = 75;

Troom_in = 90;

after(120,sec) ramp_down

ramp_down

Tset = 75;

Troom_in = 90-ramp(et)/8;

Troom_in <= 60; temp_step

temp_step

Tset = 75;

Troom_in = 75+15*square(et/90);

3 Test Sequences and Assessments

3-4

Simulate the Test Harness

1 Set the simulation time to 720 sec.
2 Simulate the Test Harness. Observe the Troom_in signal in the scope.

 Test a Model Component Using Signal Functions

3-5

See Also

Blocks
Test Sequence

3 Test Sequences and Assessments

3-6

Test Downshift Points of a Transmission Controller

In this section...

“Test Objectives and Model” on page 3-6
“The Test Sequence” on page 3-7
“Add Test Assessments for Controller” on page 3-8
“Test the Controller” on page 3-10

Test Objectives and Model

This example demonstrates a test sequence and test assessment for a transmission
shift logic controller. The controller should downshift between each of its gear ratios in
response to a ramped throttle application. As the throttle increases, the vehicle speed
is held constant. Based on hypothetical requirements, the controller performance is
assessed in a Test Assessment block.

1 Access the model. At the MATLAB command line, enter

cd(fullfile(matlabroot,'help','toolbox','sltest','examples'));

2 Copy the model sltestTestSequenceDownshift.slx to a writable location on the
MATLAB path.

3 Open the model.

open_system('sltestTestSequenceDownshift');

4 Click the badge on the subsystem shift_controller and open the test harness
controller_harness. shift_controller is connected to a Test Sequence block
and a Test Assessment block.

 Test Downshift Points of a Transmission Controller

3-7

5

The Test Sequence

1 Double-click the Test Sequence block to open the editor.
2 The test sequence begins by ramping speed to 75 to initialize the controller to fourth

gear. Throttle is then ramped at constant speed until a gear change. Downshifts are
performed to second and first gear. After the change to first gear, the test sequence
stops.

3 Test Sequences and Assessments

3-8

Add Test Assessments for Controller

Assume that the requirements for the shift controller include:

• Speed shall never be negative.
• Gear shall never be negative.

 Test Downshift Points of a Transmission Controller

3-9

• Throttle shall be between 0% and 100%.
• The controller shall not let the engine overspeed.

Open the Test Assessment block. The first three requirements correspond to these
assertions already in the block. If the controller violates one of the assertions, the
simulation fails.

assert(speed >= 0,'Speed < 0');

assert(throttle >= 0,'Throttle < 0');

assert(throttle <= 100'Throttle > 100');

assert(gear > 0,'Impossible gear');

Add additional assessments corresponding to the last requirement that the controller
shall not allow the engine to overspeed. Assume that the engine cannot overspeed in top
(fourth) gear.

1 Add three sub-steps to the AssertConditions step. To add each step, right-click the
AssertConditions step and select Add sub-step.

2 Right-click the AssertConditions step and select When decomposition. This
changes the switching behavior of the sub-steps of AssertConditions. Switching
is based on the signal condition defined in the Step column, with each condition
preceded by the when operator. Because the switching is controlled by when, the
Transition and Next Step columns are grayed out. The last step Else in the when
decomposition covers any condition not defined above it, and is left blank.

3 Enter the Step conditions as shown.

Sub-steps of AssertConditions

OverSpeed3 when gear == 3

assert(speed <= 90,'Engine overspeed in gear 3')

OverSpeed3 when gear == 2

assert(speed <= 50,'Engine overspeed in gear 2')

OverSpeed3 when gear == 1

assert(speed <= 30,'Engine overspeed in gear 1')

Else

3 Test Sequences and Assessments

3-10

Test the Controller

1 Open the scope.
2 Set the test harness model simulation time to 45 sec.
3 Simulate the harness. The output shows the progressive throttle ramp at each test

step, and the corresponding downshift.

 Test Downshift Points of a Transmission Controller

3-11

4 The controller passes all of the assessments in the Test Assessment block.

See Also

Blocks
Test Sequence

4

Test Harness Software- and Processor-
in-the-Loop

4 Test Harness Software- and Processor-in-the-Loop

4-2

SIL Verification for a Subsystem

In this section...

“Create a SIL Verification Harness for a Controller” on page 4-3
“Configure and Simulate a SIL Verification Harness” on page 4-4
“Compare the SIL Block and Model Controller Outputs” on page 4-4

This example shows subsystem verification by ensuring the output of software-in-the-
loop (SIL) code matches that of the model subsystem. You generate a SIL verification
harness, collect simulation results, and compare the results using the simulation data
inspector. You can apply a similar process for processor-in-the-loop (PIL) verification.

With SIL simulation, you can verify the behavior of production source code on your host
computer. Additionally, with PIL simulation, you can verify the compiled object code
that you intend to deploy in production. You can run the PIL object code on real target
hardware or on an instruction set simulator.

If you have an Embedded Coder license, you can create a test harness in SIL or PIL mode
for model verification. You can compare the SIL or PIL block results with the model
results and collect metrics, including execution time and code coverage. Using the test
harness to perform SIL and PIL verification, you can:

• Manage the harness with your model. Generating the test harness generates the SIL
block. The test harness is associated with the component under verification. You can
save the test harness with the main model.

• Use built-in tools for these test-design-test workflows:

• Checking the SIL or PIL block equivalence
• Updating the SIL or PIL block to the latest model design

• View and compare logged data and signals using Simulink Test Manager and
Simulation Data Inspector.

For information about running multiple simulations with unchanged generated code, see
“Prevent Code Changes in Multiple SIL and PIL Simulations”.

Also see “Code Generation of Subsystems” in the Simulink Coder™ documentation.

The example models a closed-loop controller-plant system. The controller regulates the
plant output.

 SIL Verification for a Subsystem

4-3

Create a SIL Verification Harness for a Controller

Create a SIL verification harness using data that you log from a controller subsystem
model simulation. You need an Embedded Coder license for this example.

1 Open the example model by entering

rtwdemo_sil_block

at the MATLAB command prompt,
2 Save a copy of the model using the name controller_model in a new folder, in a

writable location on the MATLAB path.
3 Enable signal logging for the model. At the command prompt, enter

set_param(bdroot,'SignalLogging','on','SignalLoggingName',...

'SIL_signals','SignalLoggingSaveFormat','Dataset')

4 Right-click the signal into Controller port In1, and select Properties. In the Signal
Properties dialog box, for the Signal name, enter controller_model_input.
Select Log signal data and click OK.

5 Right-click the signal out of Controller port Out1, and select Properties.
In the Signal Properties dialog box, for the Signal name, enter
controller_model_output. Select Log signal data and click OK.

6 Simulate the model.
7 Get the logged signals from the simulation output into the workspace. At the

command prompt, enter

out_data = out.get('SIL_signals');

control_in1 = out_data.get('controller_model_input');

control_out1 = out_data.get('controller_model_output');

8 Create the software-in-the-loop test harness. Right-click the Controller subsystem
and select Test Harness > Create Test Harness (Controller).

9 Set the harness properties:

• Name: SIL_harness
• Sources and Sinks: Inport and Outport
• Initial harness configuration: Verification
• Verification Mode: Software-in-the-loop (SIL)
• Select Open harness after creation

4 Test Harness Software- and Processor-in-the-Loop

4-4

Click OK. The resulting test harness has a SIL block.

Configure and Simulate a SIL Verification Harness

Configure and simulate a SIL verification harness for a controller subsystem.

1 Configure the test harness to import the logged controller input values. From the top
level of the test harness, in the model Configuration Parameters dialog box, in
the Data Import/Export pane, select Input. Enter control_in1.Values as the
input and click OK.

2 Enable signal logging for the test harness. At the command prompt, enter

set_param('SIL_harness','SignalLogging','on','SignalLoggingName',...

'harness_signals','SignalLoggingSaveFormat','Dataset')

3 Right-click the output signal of the SIL block and select Properties. In the Signal
Properties dialog box, for the Signal name, enter SIL_block_out. Select Log
signal data and click OK.

4 Simulate the harness.

Compare the SIL Block and Model Controller Outputs

Compare the outputs for a verification harness and a controller subsystem.

1 In the test harness model, click the Simulation Data Inspector button to open the
Simulation Data Inspector.

2 In the Simulation Data Inspector, click Import. In the Import dialog box.

 SIL Verification for a Subsystem

4-5

• Set Import from to: Base workspace.
• Set Import to to: New Run.
• Under Data to import, select Signal Name to import data from all of the

sources.
3 Click Import.
4 Select the SIL_block_out and controller_model_out signals in the Runs pane

of the data inspector window.

The chart displays the two signals, which are equivalent. This result means
equivalent output and a successful verification for the SIL code. You can plot signal
differences using the Compare tab in SDI, and perform more detailed analyses
for verification. For more information, see “Compare Signal Data from Multiple
Simulations” in the Simulink documentation.

5 Close the test harness window. You return to the main model. The badge on the
Controller block indicates that the SIL harness is associated with the subsystem.

5

Simulink Test Manager Introduction

5 Simulink Test Manager Introduction

5-2

Introduction to the Test Manager

In this section...

“Test Manager Description” on page 5-2
“Test Creation and Hierarchy” on page 5-2
“Test Results” on page 5-3
“Share Results” on page 5-3

Test Manager Description

The test manager in Simulink Test™ enables you to automate Simulink model testing
and organize large sets of tests. A model test is performed using test cases where criteria
are specified to determine a pass-fail outcome. The test cases are run from the test
manager. At the end of a test, the test case results are organized and viewed in the test
manager.

Test Creation and Hierarchy

Test cases are contained within a hierarchy of test files and test suites in the Test
Browser pane of the test manager. A test file can contain multiple test suites, and test
suites can contain multiple test cases.

There are three types of test case templates to choose from in the test manager. Each test
case uses a different set of criteria to determine the outcome of a test.

 Introduction to the Test Manager

5-3

• Baseline: compares signal outputs of a simulation to a baseline set of signals. The
comparison of the simulation output and the baseline must be within the absolute or
relative tolerances to pass the test, which is defined in the Baseline Criteria section
of the test case.

• Equivalence: compares signal outputs between two simulations. The comparison of
outputs must be within the absolute or relative tolerances to pass the test, which is
defined in the Equivalence Criteria section of the test case.

• Simulation: checks that a simulation runs without errors, which includes model
assertions.

Test Results

Results of a test are given using a pass-fail outcome. If all of the criteria defined in a
test case is satisfied, then a test passes. If any of the criteria are not satisfied, then the
test fails. Once the test has finished running, the results are viewed in the Results and
Artifacts pane. Each test result has a summary page that highlights the outcome of the
test: passed, failed, or incomplete. The simulation output of a model is also shown in the
results section. Signal data from the simulation output can be visually inspected using
the Simulation Data Inspector.

Share Results

Once you have completed the test execution and analyzed the results, you can share the
test results with others or archive them. If you want to share the results to be viewed
later in the test manager, then you can export the results to a file. To archive the results
in a document, you can generate a report, which can include the test outcome, test
summary, and any criteria used for test comparisons.

6

Test Manager Test Cases

• “Test Model Output Against a Baseline” on page 6-2
• “Test a Simulation for Run-Time Errors” on page 6-6
• “Generate Test Cases from Model Components” on page 6-9
• “Run Test Cases Programmatically” on page 6-11
• “How Tolerances Are Applied to Test Criteria” on page 6-13
• “Test Manager Limitations” on page 6-14
• “Test Case Sections” on page 6-16

6 Test Manager Test Cases

6-2

Test Model Output Against a Baseline

To test the simulation output of a model against a defined baseline data set, use a
baseline test case. In this example, use the sldemo_absbrake model to compare the
simulation output to a baseline that is captured from an earlier state of the model.

Create the Test Case

1 Open the sldemo_absbrake model.
2 To open the test manager from the model, select Analysis > Test Manager.
3 From the test manager toolstrip, click New to create a test file. Name and save the

test file.

The new test file consists of a test suite that contains one baseline test case. They
appear in the Test Browser pane.

4 Right-click the baseline test case in the Test Browser pane, and select Rename.
Rename the test case to Slip Baseline Test.

5 Under System Under Test in the test case, click the Use current model button

 to load the sldemo_absbrake model into the test case.
6 Under Baseline Criteria, click Capture to record a baseline data set from the

model specified under System Under Test.

Save the baseline data set to a location. After you save the baseline MAT-file, the
model runs and the baseline criteria appear in the table.

7 Expand the baseline data set. Set the Absolute Tolerance of the first yout signal
to 15, which corresponds to the Ww signal.

 Test Model Output Against a Baseline

6-3

For more information about tolerances and criteria, see “How Tolerances Are Applied to
Test Criteria” on page 6-13.

Run the Test Case and View Results

1 In the sldemo_absbrake model, set the Desired relative slip constant block to
0.22.

2 In the test manager, select the Slip Baseline Test case in the Test Browser pane.
3 On the test manager toolstrip, click Run to run the selected test case.

The test manager switches to the Results and Artifacts pane, and the new test
result appears at the top of the table.

4 Expand the results until you see the baseline criteria result.

The signal yout.Ww passes, but the overall baseline test fails because other signal
comparisons specified in the Baseline Criteria section of the test case were not
satisfied.

5 To view the yout.Ww signal comparison between the model and the baseline criteria,
expand Baseline Criteria Result and click the option button next to the
yout.Ww signal.

The Comparison tab opens and shows the criteria comparisons for the yout.Ww
signal.

6 Test Manager Test Cases

6-4

6 You can also view signal data from the simulation. Expand Sim Output and select
the signals you want to plot.

The Visualize tab opens and plots the simulation output.

 Test Model Output Against a Baseline

6-5

For information on how to export results and generate reports from results, see “Export
Test Results and Generate Reports”.

6 Test Manager Test Cases

6-6

Test a Simulation for Run-Time Errors

In this example, use a simulation test case with the sldemo_absbrake model to test for
simulation run-time errors. The pass-fail criteria used for a simulation test case is that
the simulation finishes without any errors.

Configure the Model

Configure the model to check if the stopping distance exceeds an upper bound.

1 Open the model sldemo_absbrake.
2 Add the Check Static Upper Bound block from the Model Verification library to the

model.
3 Connect the Check Static Upper Bound block to the Sd signal.

 Test a Simulation for Run-Time Errors

6-7

4 In the Check Static Upper Bound block dialog box, and set Upper bound to 725.

Create the Test Case

1 To open the test manager, from the model, select Analysis > Test Manager.
2 Click New to create a test file. Name and save the test file.

The new test file consists of a test suite that contains one baseline test case. They
appear in the Test Browser pane.

3 Select New > Simulation Test.
4 Right-click the new simulation test case in the Test Browser pane, and select

Rename. Rename the test case to Upper Bound Test.
5 In the test case, under System Under Test, click the Use current model button

 to assign the sldemo_absbrake model to the test case.
6 Under Parameter Overrides, click Add to add a parameter set.
7

In the dialog box, click the Refresh button to update the model parameter list.
8 Select the check box next to the workspace variable m. Click OK.
9 Double-click the Override Value and enter 55.

This value overrides the parameter value in the model when the simulation runs.

Note: To restore the default value of a parameter, clear the value in the Override
Value column and press Enter.

Run the Test Case

1 In the Test Browser pane, select the Upper Bound Test case.

6 Test Manager Test Cases

6-8

2 On the test manager toolstrip, click Run to run the selected test case.

The test manager switches to the Results and Artifacts pane, and the new test
result appears at the top of the table.

View Test Results

1 Expand the test results, and double-click Upper Bound Test.

A new tab opens that displays the outcome and results summary of the simulation
test.

2 The result shows a red X, which indicates a test failure. In this case, the model
stopping distance exceeded the upper bound of 725 and triggered an assertion from
the Check Static Upper Bound block.

Look under Errors for the details of the assertion failure.

 Generate Test Cases from Model Components

6-9

Generate Test Cases from Model Components

The test manager can generate a list of test cases for you based on the components in
your model.

• Signal Builder group in the top model
• Test harnesses from the top model or any subsystem
• Signal Builder group at the top level of a test harness

To generate test cases from your model:

1 In the test manager, click the New arrow and select Test File > Test File from
Model.

2 In the New Test File dialog box, specify the Model. The model must be on the
MATLAB path.

3 Specify the Location of the model.
4 Select the Test type. All test cases generated will be of the test type specified here.

6 Test Manager Test Cases

6-10

 Run Test Cases Programmatically

6-11

Run Test Cases Programmatically

In this section...

“List of Functions and Classes” on page 6-11
“Run a Test File and Report Results” on page 6-11

List of Functions and Classes

Function Description

sltest.testmanager.view Launch the Simulink Test manager
sltest.testmanager.load Load a test file in the Simulink Test

manager
sltest.testmanager.run Run all test files in the Simulink Test

manager
sltest.testmanager.report Generate report of test results
sltest.testmanager.clear Clear all test files from the Simulink Test

manager
sltest.testmanager.close Close the Simulink Test manager

Class Description

sltest.testmanager.ResultSet Access results set data
sltest.testmanager.TestSuiteResult Access test suite results data
sltest.testmanager.TestCaseResult Access test case results data

Run a Test File and Report Results

You can use the sltest.testmanager functions for test automation and
report generation. If you have authored a test file in the test manager, you can
programmatically run the test file, analyze the test results, and generate reports from
the results. In this example, the sample test file name is my_test_file.mldatx.

Load the test file you authored in the test manager.

sltest.testmanager.load('my_test_file.mldatx');

6 Test Manager Test Cases

6-12

Run the test file in the test manager and return an object with results data.

resultsObject = sltest.testmanager.run;

The results set object gives information about the number of passed, failed, and disabled
test cases.

Generate a report from the results data.

filePath = 'test_report.pdf';

sltest.testmanager.report(resultsObject,filePath,'Author','Test Engineer');

The results report is generated as a PDF and is set to open when it is completed. For
more report generation settings, see sltest.testmanager.report.

Clear the test manager of all test files.

sltest.testmanager.clear;

 How Tolerances Are Applied to Test Criteria

6-13

How Tolerances Are Applied to Test Criteria

Tolerances can be specified in the Baseline Criteria or Equivalence Criteria sections
of test cases. The default value for the relative tolerance and absolute tolerance for a
signal comparison is zero. If you specify tolerances, then the test calculates the tolerances
as follows:

tolerance = max(absoluteTolerance,relativeTolerance*abs(baselineData));

The more lenient tolerance is used to determine the pass-fail outcome of the criteria
comparison.

Modify Criteria Tolerances

You can change the criteria tolerances in the Baseline Criteria or Equivalence
Criteria sections of baseline or equivalence test cases, respectively. To modify a
tolerance, select the signal name in the criteria table and double-click the tolerance
value.

If you modify a tolerance after a test case has been run, then rerun the test case to apply
the new tolerance value to the pass-fail results.

6 Test Manager Test Cases

6-14

Test Manager Limitations

In this section...

“Simulation Mode” on page 6-14
“Callback Scripts” on page 6-14
“Simulink Design Verifier Input File” on page 6-14
“Protected Models” on page 6-15

Simulation Mode

There are some limitations for the simulation mode in test cases:

• The System Under Test cannot be in Fast Restart mode for test execution.
• A test that is running with the System Under Test simulation mode set to Rapid

Accelerator cannot be stopped using Stop on the test manager toolstrip. To stop the
test, enter Ctrl+c in the MATLAB command prompt.

Callback Scripts

The test case callback scripts are not stored with the model and do not override Simulink
model callbacks. Test case callback scripts have some limitations:

• The test manager cannot stop the execution of an infinite loop inside a callback
script. To stop execution of an infinite loop from a callback script, press Ctrl+c in the
MATLAB command prompt.

• sltest.testmanager functions are not supported.

Simulink Design Verifier Input File

If you want to use a Simulink Design Verifier simulation data input file in the test
manager, then you need to convert the input file to the DataSet format using the
function sldvsimdata. If there are multiple input sets in one Simulink Design Verifier
simulation data input file, then you need to separate the input sets into individual input
files for each test.

 Test Manager Limitations

6-15

Protected Models

You cannot specify a protected model as the model used for a test case in the System
Under Test section.

6 Test Manager Test Cases

6-16

Test Case Sections

In this section...

“Description” on page 6-17
“Requirements” on page 6-17
“System Under Test” on page 6-17
“Parameter Overrides” on page 6-18
“Callbacks” on page 6-19
“Inputs” on page 6-19
“Outputs” on page 6-20
“Configuration Settings” on page 6-20
“Simulation 1 and Simulation 2” on page 6-20
“Equivalence Criteria” on page 6-21
“Baseline Criteria” on page 6-21

Information about the test case sections is outlined here. Double-click a test case in the
Test Browser pane to open a tab and view all of the test case sections. A baseline test
case is shown as an example. For more information on which test case to use for your
application, see “Introduction to the Test Manager”.

 Test Case Sections

6-17

If a box or list in the test case shows a warning icon , then it is a required field in
order for the test case to run.

Description

To add descriptive text to your test case, expand the section and double-click the text box
below Description.

Requirements

You can create, edit, and delete requirements traceability links for a test case in the
Requirements section if you have a license for Simulink Verification and Validation. To
add requirements links:

1 Click the Edit requirements button .
2 In the Link Editor dialog box, click New to add a requirement link to the list.
3 Type the name of the requirement link in the Description box.
4 Click Browse and locate the requirement file. Click Open. For more information on

supported requirements document types, see “Supported Requirements Document
Types”.

5 Click OK. The requirement link appears in the Requirements list if a document is
specified in the Link Editor.

For more information about the Link Editor, see “Requirements Traceability Link
Editor”.

System Under Test

Specify the model you want to test in the System Under Test section. To use the

current model that is in focus, click the Use current model button .

Note: The model must be available on the path to run the test case. You can set the path
programmatically using the pre-load callback. See “Callbacks” on page 6-19.

6 Test Manager Test Cases

6-18

If a new model is specified in the System Under Test section, then the model information
might not be up to date. To update the model test harnesses, signal builder groups, and

available configuration sets, click the Refresh button .

Test Harness

If you have a test harness in your system under test, then you can select the test harness
to be used for the test case. If a test harness has been added or removed from a model,

then you might need to click the Refresh button to view the updated list of available
test harnesses.

For more information about using test harnesses, see “Refine, Test, and Debug a
Subsystem”.

Simulation Settings

You can override the System Under Test simulation settings such as the simulation
mode, start time, stop time, and initial state.

Parameter Overrides

You can specify parameter values in the test case to override the parameter values in
the model workspace, data dictionary, or base workspace in the Parameter Overrides
section. Parameters are grouped into sets. Parameter sets and individual parameters
overrides can be turned on or off by selecting or clearing the check box next to the set or
parameter. To add a parameter override:

1 Click Add.

A dialog box opens with a list of parameters. If the list of parameters is not current,

press the Refresh button in the dialog box to update the list.
2 Select the parameter you want to override.
3 Click OK to add the parameter to the parameter set.
4 Enter the override value in the parameter Override Value column.

To restore the default value of a parameter, clear the value in the Override Value
column and press Enter.

 Test Case Sections

6-19

You can also add a set of parameter overrides from a MAT-file. Click the Add arrow and
select Add File to create a new parameter set from a MAT-file.

Callbacks

There are three callback scripts available in each test case that execute at different times
during the test:

• Pre-load: runs before the model loads and any model callbacks.

An example of a pre-load callback script would be to add the model path:

addpath(C:\MATLAB\model);

• Post-load: runs after the model loads and the PostLoadFcn model callback.
• Cleanup: runs after simulations and all model callbacks.

Click the Run button next to Pre-Load, Post-Load, or Cleanup to run only that
callback script.

See “Test Manager Limitations” on page 6-14 for the limitations of callback scripts inside
test cases. For information on Simulink model callbacks, see “Model Callbacks”.

There are predefined variables available to you in the test case callbacks:

• sltest_bdroot available in Post-Load: The model simulated by the test case. This
can be a harness model.

• sltest_sut available in Post-Load: The system under test. For a harness, it is the
component under test.

• sltest_isharness available in Post-Load: Returns true if sltest_bdroot is a
harness model.

• sltest_simout available in Cleanup: Simulation output produced by simulation.

Inputs

You can override inputs to your System Under Test. If you select Load Inputs from
File, the inputs are mapped using root inport mapping. For more information on root
inport mapping see “Import and Map Root-Level Inport Data”.

6 Test Manager Test Cases

6-20

Load Inputs from File

Specify the file name and location of the signal inputs you want to map in the Location
field. Supported file types are MAT-file and Microsoft® Excel® files. See “Identify Signal
Data to Import and Map” for more information on supported file formats.

Select Map Inputs to map from the input file specified in Location. If you select Map
Inputs, anything specified in the Input String field is overridden.

If Map Inputs does not configure the inputs as intended, then select Mapping Tool
to open the Root Inport Mapping tool for advanced mapping options and detailed
information about the mapping status for each signal input.

Signal Builder Group

You can add a signal builder group from a Signal Builder in the System Under Test
model.

Outputs

You can override model output settings. These settings are the same settings found in
the Data Import/Export pane of the Model Configuration Parameters.

Configuration Settings

You can override the System Under Test configuration settings.

Note: If you have selected Override model settings in the Outputs section, then these
settings override the output settings in the configuration settings.

Simulation 1 and Simulation 2

The Simulation 1 and Simulation 2 sections in the equivalence test case are the same
templates. The system under test from Simulation 1 and Simulation 2 are compared to
each other using the signal data defined under Equivalence Criteria.

 Test Case Sections

6-21

Equivalence Criteria

This test case section is only contained in an Equivalence test case. The equivalence
criteria is a set of signal data that is compared between Simulation 1 and Simulation
2 in an Equivalence test case. You can specify both absolute and relative tolerances for
individual signals or the entire criteria set. Tolerances can be specified in this section to
regulate pass-fail criteria of the test.

Click Capture to run the system under test in Simulation 1 and identify signals
for equivalence criteria. Signals in the model marked for streaming and logging are
captured.

Baseline Criteria

This test case section is only contained in a Baseline test case. Tolerances can be
specified in this section to regulate pass-fail criteria of the test. You can specify both
absolute and relative tolerances for individual signals or the entire criteria set. Signals in
the model marked for streaming and logging are captured. To see tolerances used in an
example for baseline criteria, see “Test Model Output Against a Baseline” on page 6-2.

7

Test Manager Results and Reports

• “View Test Case Results” on page 7-2
• “Export Test Results and Generate Reports” on page 7-9
• “Results Sections” on page 7-11

7 Test Manager Results and Reports

7-2

View Test Case Results

In this section...

“View Results Summary” on page 7-2
“Visualize Test Case Simulation Output and Criteria” on page 7-4

After a test case has finished running in the test manager, the test case result becomes
available in the Results and Artifacts pane. Test results are organized in the same
hierarchy as the test file, test suite, and test cases that were run from the Test Browser
pane. In addition, the Results and Artifacts pane shows the criteria results and
simulation output, if applicable to the test case.

View Results Summary

The test case results tab gives a high-level summary and other information about an
individual test case result. To open the test case results tab:

1 Select the Results and Artifacts pane.

2 Double-click a test case result.

 View Test Case Results

7-3

A tab opens containing the test case results information.

7 Test Manager Results and Reports

7-4

Visualize Test Case Simulation Output and Criteria

You can view signal data from simulation output or comparisons of signal data used in
baseline or equivalence criteria.

To view simulation output from a test case:

1 Select the Results and Artifacts pane.
2 Expand the Sim Output section of the test case result.

 View Test Case Results

7-5

3 Select the check box of signals you want to plot.

The Visualize tab appears and plots the signals.

7 Test Manager Results and Reports

7-6

To view equivalence or baseline criteria comparisons:

1 Select the Results and Artifacts pane.
2 Expand the Baseline Criteria Result or Equivalence Criteria Result section of

the test case result.
3 Select the option button of the signal comparison you want to plot.

 View Test Case Results

7-7

The Comparison tab appears and plots the signal comparison.

7 Test Manager Results and Reports

7-8

To see an example of creating a test case and viewing the results, see “Test Model Output
Against a Baseline”.

 Export Test Results and Generate Reports

7-9

Export Test Results and Generate Reports

In this section...

“Export Results” on page 7-9
“Create a Test Results Report” on page 7-10

Once you have run test cases and generated test results, you can export results and
generate reports. Test case results are all contained in the Results and Artifacts pane.

Export Results

Test results are not saved with the test file. To save results, select the result in the
Results and Artifacts pane, and click Export on the toolstrip.

• Select complete result sets to export to a MATLAB data export file (.mldatx).

• Select criteria comparisons or simulation output to export signal data to the base
workspace or to a MAT-file.

7 Test Manager Results and Reports

7-10

Create a Test Results Report

Result reports contain report overview information, the test environment, results
summaries with test outcomes, comparison criteria plots, and simulation output plots.
You can customize what information is included in the report, and it can be saved in
three different file formats: ZIP (HTML), DOCX, and PDF.

To generate a report:

1 Select the Results and Artifacts pane to view test results.
2 Select results for a test file, test suite, or test case in the Results and Artifacts

pane.

Note: You can create a report from multiple results sets, but you cannot create a
report from multiple test files, test suites, or test cases within results sets.

3 From the toolstrip, click Report.
4 Choose the options of what to include in the report.
5 Select the File Format to save the report as.
6 Click Create to generate the report.

 Results Sections

7-11

Results Sections

In this section...

“Summary” on page 7-12
“Test Requirement” on page 7-12
“Errors” on page 7-13
“Logs” on page 7-13
“Notes” on page 7-13
“Parameter Overrides” on page 7-13

Information about test case result sections is outlined here. Double-click a test case
results in the Results and Artifacts pane to open a results tab and view all of the test
case result sections. A baseline test case result is shown as an example.

7 Test Manager Results and Reports

7-12

Summary

The Summary section includes the basic test information and the test outcome.

Test Requirement

A list of any test requirements linked to the test case. See “Requirements” for more
information on linking requirements to test cases.

 Results Sections

7-13

Errors

These are simulation errors that are captured from the Simulink Diagnostic Viewer.
Errors from incorrect information defined in the test case and callback scripts are also
shown here.

Logs

These are simulation warnings that are captured from the Simulink Diagnostic Viewer.

Notes

You can include any notes about the test results here. These notes are saved with the
results.

Parameter Overrides

A list of any parameter overrides specified in the test case under Parameter Overrides.
If there are no parameter overrides specified, then this section is not shown in the results
summary.

